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Abstract

Sensorimotor adaptation is influenced by both the size and variance of error information. In the present study, we varied visual
uncertainty and error size in a factorial manner and evaluated their joint effect on adaptation, using a feedback method that
avoids inherent limitations with standard visuomotor tasks. Uncertainty attenuated adaptation, but only when the error was small.
This striking interaction highlights a novel constraint for models of sensorimotor adaptation. Sensorimotor adaptation is driven by
sensory prediction errors, the difference between the predicted and actual feedback. When the position of the feedback is
made uncertain, motor adaptation is attenuated. This effect, in the context of optimal sensory integration models, has been
attributed to the motor system discounting noisy feedback and thus reducing the learning rate. In its simplest form, optimal inte-
gration predicts that uncertainty would result in reduced learning for all error sizes. However, these predictions remain untested
since manipulations of error size in standard visuomotor tasks introduce confounds in the degree to which performance is influ-
enced by other learning processes such as strategy use. Here, we used a novel visuomotor task that isolates the contribution of
implicit adaptation, independent of error size. In two experiments, we varied feedback uncertainty and error size in a factorial
manner. At odds with the basic predictions derived from the optimal integration theory, the results show that uncertainty attenu-
ated learning only when the error size was small but had no effect when the error size was large. We discuss possible mecha-
nisms that may account for this interaction, considering how uncertainty may interact with the relevance assigned to the error
signal or how the output of the adaptation system in terms of recalibrating the sensorimotor map may be modified by
uncertainty.

NEW & NOTEWORTHY Sensorimotor adaptation is influenced by both the size and variance of error information. In the present
study, we varied visual uncertainty and error size in a factorial manner and evaluated their joint effect on adaptation, using a
feedback method that avoids inherent limitations with standard visuomotor tasks. Uncertainty attenuated adaptation but only
when the error was small. This striking interaction highlights a novel constraint for models of sensorimotor adaptation.
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INTRODUCTION

Multiple learning processes contribute to successful goal-
directed actions in response to changes in physiological
states and environments (1–7). Among these processes,
implicit motor adaptation is of primary importance, helping
ensure that the sensorimotor system remains well calibrated.
This adaptive process is assumed to be driven by sensory
prediction error (SPE), the difference between the predicted
feedback from a motor command and the actual sensory
feedback (8, 9).

The behavioral change in response to a SPE, or rate of
implicit adaptation, is constrained by various properties of
the feedback signal. One constraint is related to the temporal
properties of the feedback. For example, the rate of adapta-
tion is strongest when feedback is provided throughout the
entire movement (7, 10–12). In contrast, the rate is attenu-
ated when the feedback is limited to the end point of the
movement and further attenuated when it is delayed (13–17).

A second constraint is related to spatial properties of the
feedback. One example here is related to the size of the error
signal and how this may impact the inferred relevance by
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our nervous system (18–21), with greater weight given to
errors that are deemed to be behaviorally relevant.
Numerous studies have observed reduced learning rates in
response to large errors (21–23), with this effect interpreted
as the motor system attributing these errors to irrelevant ex-
trinsic sources, thereby discounting these low probability
events. For example, it may not be advantageous for the
motor system to recalibrate for a missed basketball shot
because of a sudden large gust of wind. Whereas variation in
error size changes the mean of the feedback signal, other
manipulations change the standard deviation or uncertainty
of the feedback. For example, the visual feedback can be sig-
naled by either a cursor (small standard deviation, low spa-
tial uncertainty) or a cloud of dots (large standard deviation,
high spatial uncertainty), with increases in spatial uncer-
tainty accompanied by decreases in adaptation rate (24–28).

A parsimonious account of these effects builds on the the-
oretical framework of optimal integration (29). In the context
of sensorimotor adaptation, the learning rate is based on a
weighted signal composed of the feedback and the feedfor-
ward prediction. Uncertainty, either from temporal delay or
spatial variability reduces the weight given to the feedback
signal and, as such, reduces the rate of adaptation (24, 28,
30). Moreover, variation in error size may also be interpreted
as a source of uncertainty in terms of error relevance. Thus a
small error, deemed to be highly relevant to the motor sys-
tem, is given more weight during learning, whereas a large
error, with questionable relevance, is discounted.

To date, tests of optimal integration have relied on stand-
ard visuomotor tasks in which the perturbation involves
introducing a mismatch between visual feedback and the
position of the hand (e.g., cursor rotated by 45� from true
hand position). These tasks have been shown to conflate dif-
ferent learning processes and, in particular, implicit sensori-
motor adaptation and explicit (strategic) aiming (2, 7, 31, 32).
Since these processes work in tandem, modifying the sen-
sorimotor map in a similar direction, it is difficult to evalu-
ate how uncertainty impacts implicit adaptation per se.
Moreover, when the visual feedback is contingent on the
participant’s performance, the size of the error and task
outcome tend to be confounded with the learning phase:
Large errors are frequent early in learning and small errors
are frequent late in learning.

To bypass these concerns, we revisited the effect of
visual uncertainty on sensorimotor adaptation by using
noncontingent, clamped visual feedback (33). As with
standard visuomotor rotation tasks, participants reach
to a visual target, with the position of the hand
occluded. Visual feedback of hand position is usually
provided in the form of a cursor. The radial position of
the cursor is locked to that of the hand, similar to stand-
ard adaptation tasks. The key feature, though, is that
with clamped feedback, the angular position of the cur-
sor is invariant with respect to the target. Despite being
fully informed of the manipulation and instructed to
always reach directly to the target, the participant’s
behavior exhibits all of the hallmarks of implicit adapta-
tion, with the heading angle gradually shifting in the
direction opposite to the clamped feedback (33–38).
Presumably, this change is driven in an obligatory
manner (39) because the implicit adaptation system

interprets the discrepancy between the target and feed-
back cursor as a SPE.

In the present experiments, we manipulate both the size
(mean) and uncertainty (variance) of the “clamped” visual
feedback in a factorial manner. By using the clamp method,
we can hone in on the effect of uncertainty on implicit adap-
tation, eliminating possible contributions from other learn-
ing processes. In this way, we test a core prediction of the
basic optimal integration model, namely that the effect of
increasing uncertainty should be independent of the size of
the error. However, previous studies that have usedmethods
to isolate implicit adaptation have revealed a surprising ri-
gidity to this process: Adaptation is largely invariant over a
wide range of errors (33, 35), perturbation schedules (40),
and task goals (39). This leaves open the possibility that,
when adaptation is isolated, visual uncertainty may have a
negligible effect on learning. Moreover, the clamp method
provides a unique opportunity to assess the impact of uncer-
tainty for a fixed visual perturbation, where the error size is
held constant over the course of learning.

METHODS

Participants

A total of 120 participants (52 females, mean age=
20.3± 2.1 yr) were recruited for two experiments. The sample
sizes were based on previous studies using noncontingent
visual feedback to study sensorimotor adaptation (33, 35,
36). All participants were right-handed, as verified with the
Edinburgh Handedness Inventory (41), provided written
informed consent to the study and received course credit or
financial compensation for their participation. The experi-
mental protocol was approved by the Institutional Review
Board at the University of California, Berkeley.

Reaching Task

The participant was seated at a custom-made table that
housed a horizontally mounted LCD screen (53.2 cm by
30cm, ASUS), positioned 27cm above a digitizing tablet
(49.3 cm by 32.7 cm, Intuos 4XL; Wacom, Vancouver, WA)
(Fig. 1A). Stimuli were projected onto the LCD screen. The ex-
perimental software was customwritten inMatlab, using the
Psychtoolbox extensions (42).

The participant performed center-out planar reaching
movements by sliding a modified air hockey “paddle” con-
taining an embedded stylus. The tablet recorded the position
of the stylus at 200Hz. The monitor occluded direct vision
of the hand, and the room lights were extinguished to mini-
mize peripheral vision of the arm. The participant was asked
to move from a start location at the center of the workspace
(indicated by a white annulus, 0.6-cm diameter) to a visual
target (blue circle, 0.6-cm diameter). The target could appear
at one of four locations around a virtual circle (45�, 135�,
225�, and 335�), with a radial distance of 8 cm from the start
location.

At the beginning of each trial, the white annulus was pres-
ent on the screen, indicating the start location. The partici-
pant was instructed to move the stylus to the start location.
Feedback of hand position was indicated by a solid white
cursor (diameter 0.3 cm), only visible when the hand was
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within 2 cm of the start location. Once the start location was
maintained for 500ms, the white cursor corresponding to
the participant’s hand position was turned off. The blue tar-
get appeared for only 250ms and then blanked before the
onset of movement. The participant was instructed to rap-
idly slide the stylus, attempting to “slice” through the posi-
tion at which the target had appeared. We opted to blank the
target before movement to prevent the target from providing
a visual reference point for comparison with the end point
feedback (see below; also Ref. 24). To ensure rapid move-
ments, the auditory message, “too slow” was played if the
movement time exceeded 300ms. No intertrial interval was
imposed.

Experimental Feedback Conditions

Visual feedback was limited to end point feedback and
remained visible for 500ms. The feedback was presented
when the movement amplitude exceeded 8cm. The radial
position of the feedback was always at the distance of the tar-
get (8cm). The angular position of the feedback was either
veridical (hand position at 8-cm amplitude) or displaced
from the target by a prespecified angle (clamped perturba-
tion). The form of the feedback was either a single white cur-
sor (low uncertainty) or a cloud of dots (high uncertainty)
(Fig. 1B). For the latter, the feedback signal was composed of
a cloud of dots (25 gray 0.3-cm diameter circles) with the
position of each dot pseudorandomly drawn from a two-
dimensional isotropic Gaussian distribution with a standard
deviation of 10� and with a minimal distance of 0.3 cm
between dots (i.e., dots do not overlap). The center of mass
of the cloud was controlled to be at the desired clamp angle
on perturbation trials. The luminance of the 25 dots was
adjusted such that their sum was equal to the luminance of
the cursor. In addition to trials with veridical and clamped
feedback, there were also trials with no feedback.

Experiment 1

Experiment 1 (4 groups, n = 24/group) was designed to
examine the impact of visual uncertainty on sensorimotor
adaptation when the error signal remained invariant for the

duration of the experiment. A 2 � 2 factorial design was
employed, with one factor based on error size (3.5� or 30�

clamped displacement of feedback relative to target) and
the other based on certainty (cursor or cloud) (Fig. 1B).
Participants were randomly assigned to one of the four con-
ditions, and within each group, the direction of the rotation
(clockwise or counterclockwise relative to the target) was
counterbalanced. By using a fixed perturbation for each par-
ticipant for the duration of the experiment, we could observe
the learning function to near asymptotic performance.

The experiment consisted of 700 trials, divided into 5
blocks: no feedback baseline (20 trials), veridical feedback
baseline (60 trials), clamped feedback perturbation (600 tri-
als), no feedback postperturbation (12 trials), and veridical
feedback postperturbation (8 trials). The initial baseline tri-
als were included to familiarize the participants with the
apparatus and provide veridical feedback to minimize idio-
syncratic directional biases. Before the error clamp block,
participants were informed about the nature of the perturba-
tion, with the instructions emphasizing that the position of
the feedback was independent of their hand movement.
There were also three trials to demonstrate the invariant na-
ture of the feedback. For each of these three trials, the target
appeared at the 90� location (straight ahead), and on succes-
sive trials, the experimenter instructed the participant to
“Reach straight to the left” (180�), “Reach straight to the
right” (0�), and “Reach backward towards your torso” (270�).
The visual feedback appeared at 90� with respect to the tar-
get for all three trials. This was followed by the 600-trial
error clamp block. The final two blocks were no feedback (no
visual feedback present) and veridical feedback washout
blocks, where the participant was instructed to reach directly
to the target.

Experiment 1 Reaching Data Analysis

The primary dependent variable was end point hand
angle, defined as the angle of the hand relative to the target
when movement amplitude reached 8cm from the start
position (i.e., angle defined by two lines, one from the start
position to the target and the other from the start position to

Figure 1. Experiment methods. A: experimental apparatus and setup. B: schematic overview of the 2 � 2 design in experiment 1. The target (blue dot)
was blanked from the screen before participants initiated their reach. Feedback was only presented at the endpoint, in the form of a cursor (white dot)
or cloud of dots. The dotted line is included to graphically highlight the two clamp angles (not drawn to scale), pointing from the start position to the cent-
roid of the feedback. C: trial sequence for the visual discrimination task. The centroid of the comparison stimulus (cursor or cloud) was positioned clock-
wise or counterclockwise relative to the target location at an angle (h) equal to 1 of 5 rotation angles (see text). In the example shown, the comparison
stimulus is a cursor (white circle) shifted 5� clockwise from the referent stimulus (position depicted in blue outline but not visible on the screen). The par-
ticipants reported whether they perceived the centroid to be clockwise or counterclockwise relative to the remembered target location.
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the hand). A hand angle of 0� corresponds to a reach directly
to the target. Analyses were also performed using heading
angle at peak radial velocity, which is �1 cm into the reach.
These analyses yielded essentially the same results; as such,
we only report the results from the end point hand angle
analyses. To aid visualization, the hand angle values for the
groups with counterclockwise rotations were flipped, such
that a positive heading angle corresponds to an angle in the
direction of expected adaptation (the opposite direction of
the rotated, clamped feedback).

Trials in which the observed hand angles deviated by >3.5
SD from a moving mean based on a five-trial window were
excluded from further analysis (<1% of all trials and between
0 and 2.3% of trials removed for each participant). These out-
lier trials were assumed to reflect attentional lapses or trials
in which the participant attempted to anticipate the target
location.

Movement cycles consisted of four consecutive reaches (1
reach per 4 target locations). The mean heading angle for
each cycle was calculated and baseline subtracted to assess
adaptation relative to (small) idiosyncratic biases. Baseline
was defined as the last five cycles of the veridical feedback
baseline block (cycles 16–20).

We used three primary measures of adaptation: early ad-
aptation rate, late adaptation, and aftereffect. Following Kim
et al. (35), early adaptation rate was operationalized as the
average change in hand angle per cycle, with the analysis
conducted over cycles three to seven of the perturbation
block. (Given the somewhat arbitrary range selection, we
also calculated the same dependent variable using the first
10 cycles of the perturbation block and observed the same
pattern of results.) Late adaptation was operationalized as
the average mean hand angle over the last 10 cycles of the
perturbation block (cycles 161–170) (33, 35). The aftereffect
was operationalized as the average mean hand angle over
the first cycle of the no-feedback washout block. Note that
we opted to use these behavioral measures rather than
obtain parameter estimates from exponential fits since the
latter approach gives considerable weight to the asymptotic
phase of performance and is less sensitive to early differen-
ces in rate.

We used the Shapiro-Wilk test and Levene’s test to assess
normality and homogeneity of variance, respectively, in the
distribution of these dependent variables. These tests
revealed a number of violations. As such, we opted to
employ a more conservative nonparametric permutation
test in all of the comparisons reported below (43–45). For
these tests, we used 1,000 permutations and calculated the
permutation P value using the aovperm and perm.t.test
functions in the R statistical package (46).

For each condition, we first assessed if the perturbed feed-
back produced adaptation, using a paired permutation test
to compare the aftereffect measure to baseline performance
(average hand angle of last 5 cycles of veridical feedback). To
examine the effect of visual uncertainty on motor adapta-
tion, and how this effect varied with error size, the rate of
early adaptation, the magnitude of late adaptation, and the
magnitude of aftereffect were evaluated separately with a
two-way permutation ANOVA. Post hoc unpaired permuta-
tion tests were used in all post-hoc comparisons, with the

P values Bonferroni corrected (Pperm,bf) to assess group
differences.

We also conducted two additional tests to compare per-
formance during different phases of the experiment. First, we
evaluated whether implicit adaptation was maintained from
late adaptation to the aftereffect block, performing a two-way
permutation ANOVA. Second, we evaluated whether visual
uncertainty had a similar effect for early and late phases of
adaptation using a permutation linear mixed effect model,
with fixed factors (learning phase, clamp size, and feedback
type) and a random factor (Participant ID).

Visual Discrimination Task

To quantify the effect of our uncertainty manipulation, a
subset of the participants in experiment 1 (n = 64) were tested
on a perceptual task, comparing position acuity for displays
containing a single dot or a cloud of dots (Fig. 1C). For these
participants, the visual discrimination task was performed
before the reaching task.

We used a two-alternative, forced choice visual dis-
crimination task. Each trial began with the presentation
of an arrow at the center of the screen that pointed
towards one of two possible target locations (45� or 135�)
for 1,000ms. Once the arrow disappeared, a blue dot (0.6-
mm diameter) was immediately presented at the cued
location. This defined the reference position. The refer-
ent remained visible for 250ms, followed by a blank
screen for 750ms. The comparison stimulus was then pre-
sented for 500ms. Using a within-subject design, there
were 20 comparison values: 10 displacement sizes (± 0.3�,
0.8�, 1.5�, 2.5�, or 5�) � 2 forms (cursor or cloud, using the
same specifications for each as in the reaching phase of
the study). Following the offset of the comparison stimu-
lus, the participant vocally indicated if the center of the
comparison stimulus was shifted clockwise or counter-
clockwise relative to the target location. The experi-
menter entered the participant’s choice with a key press,
concluding the trial. A right arrow response was used for
clockwise choices and left arrow for counterclockwise
choices.

To maintain a similar task context between the visual dis-
crimination task and the reaching task, participants were
not asked to maintain fixation. However, we recognize that
the attentional demands in the two tasks were quite differ-
ent. In this visual discrimination task, participants attended
to the comparison stimulus to provide an accurate direc-
tional judgement relative to the referent, whereas in the
reaching task, participants ignored the visual feedback (per
the task instructions).

Visual Discrimination Data Analysis

To examine how visual uncertainty influences percep-
tion, we fitted psychometric functions to the participants’
verbal reports from the location discrimination task in
experiment 1. The psychometric function was defined as
the probability of reporting “counterclockwise” for each
displacement size, x. We fit the judgment data with a cu-
mulative density function of a normal distribution
expressed as j(x):
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From this function, we obtained the point of subjective
equality, μ, the mean of the underlying Gaussian distribu-
tion, as an estimate of the participant’s bias. As a measure of
visual uncertainty, we used the difference threshold rv, the
standard deviation of the underlying Gaussian distribution.
A larger difference threshold is indicative of more variance
(and uncertainty) in the perceptual judgments. Pairwise per-
mutation t tests were performed on these two variables to
assess within-participant differences in directional bias and
visual uncertainty for the cursor and cloud conditions.

Experiment 2

In experiment 2, the size and direction of the clamped per-
turbation were varied from trial to trial, allowing us to exam-
ine the effect of uncertainty across a wider range of error
sizes. A within-subject design was employed (n = 24), with
each participant tested in two sessions. In one session, the
feedback consisted of a cursor (i.e., a single dot), and in
the other, the feedback was composed of the cloud of dots.
The order of the two types of feedback was counterbal-
anced across participants, with a gap of 1–3 days between
sessions. Testing was spread over two sessions to allow us
to collection sufficient observations for each error size.
Each participant was assigned to reach to a single target,
chosen from one of three possible locations (45�, 135�, and
225�). The same target location was used for both sessions.

There were four blocks in each session for a total of 1,465
trials per session: No feedback baseline (10 trials), veridical
feedback baseline (20 trials), clamped feedback perturbation
(1,425 trials), and no-feedback postperturbation (10 trials).
During the perturbation block, there were 19 possible posi-
tions for the center of the feedback: 0�, ±1.5�, ±3.5�, ±10�,
±18�, ±30�, ±45�, ±60�, ±75�, and ±90�, with the ± indicating
that the perturbation could either be clockwise or counter-
clockwise from the target. There were 75 trials for each con-
dition, with the size of the perturbation selected at random
for each trial.

All other aspects of the experiment were the same as in
experiment 1. Participants were informed of the nature of the
clamped feedback before the perturbation block. The
instructions (together with demonstration trials) empha-
sized that the feedback position was not contingent on
their movement. They were told that the position of the
feedback would be randomly determined and that they
should ignore it.

Experiment 2 Reaching Data Analysis

Hand angles were measured as in experiment 1, with each
value baseline corrected (subtraction of mean hand angle
during last 5 trials of the feedback baseline block). The pri-
mary analysis focused on trial-to-trial changes (D) in hand
angle (difference in hand angle between trial n þ 1 and trial
n), looking at these values as a function of the clamp size and
feedback type on trial n. Since each participant performed
both clockwise and counterclockwise error clamps, we col-
lapsed the data over direction for a given perturbation size,

providing a more stable estimate of the D hand angle for
each condition based on 150 trials/perturbation size, except
for the 0� condition which had only 75 trials. Trials in which
the change in hand angle deviated by >3.5 SD were excluded
from further analyses (<1% of all trials and between 0 and
0.8% of trials removed for each participant).

To evaluate the interaction between error size and visual
uncertainty on adaptation, the D hand angle values were
submitted to a mixed effect model: error size and visual
uncertainty were the within-subject fixed factors, and partic-
ipant was the random factor (Satterthwaite’s degree of free-
dom reported). Data from the 0� clamp condition were
excluded since no a priori differences were expected
between the cursor and cloud for this condition [confirmed
using a permutation test: t(23) = –0.25, Pperm = 0.56, d=0.05].
As a finer grain post hoc analysis, each of the 10 rotation
sizes were submitted to 10 planned permutation tests, com-
paring trial-by-trial adaptation between the cursor and cloud
conditions. Since the main goal of this study is to identify
error sizes where visual uncertainty has an effect on adapta-
tion, applying a Bonferroni family-wise error correction on
10 planned comparisons would lead to a loss in power. We
therefore corrected for multiple comparison using the less
stringent Benjamini-Hochberg Procedure (Pperm,BH) with a
false discovery rate of 0.05 (R package: FSA).

Measures of Effect Size

Cohen’s d (for between-subjects design), Cohen’s dz (for
within-subjects design), and eta squared (for between-sub-
jects ANOVA) were provided as standardized measures of
effect size (47). To evaluate key null effects, we calculated
the Bayes factor (BF0þ ) for the t values, using the ratio
between the likelihood of two hypotheses (i.e., the likelihood
that the data support the null hypothesis over the likelihood
that the data support the alternative hypothesis). As such, a
Bayes factor >1 is an indication that the data favors the null,
with the magnitude reflecting the effect size. As a rule of
thumb, Bayes factors between 1 and 3, 3 and 10, and above 10
are considered to provide weak, moderate, and strong sup-
port for the null hypothesis, respectively (48, 49).

RESULTS
In experiment 1, we asked whether visual uncertainty

affects implicit motor adaptation for both small (3.5�) and
large (30�) errors. Wemanipulated uncertainty by presenting
end point feedback in the form of a cursor (low uncertainty)
or cloud of dots (high uncertainty).

Experiment 1: Perceptual Discrimination Task

To verify that perceived location is more uncertain with
the cloud displays, a subset of participants performed a vis-
ual discrimination task before completing the reaching task.
For this task, participants compared the relative position of
stimuli in two successively presented displays. The first dis-
play showed a single dot; the second showed either a single
dot or a cloud of dots. The participant judged if the position
of the second dot or centroid of the cloud was shifted clock-
wise or counterclockwise relative to the position of the dot in
the first display.
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As can be seen in Fig. 2A, while participants were mostly
correct in assessing the relative positions of both visual stim-
uli, performance was more variable in the cloud condition
compared with the dot condition. To quantify these effects,
we estimated the directional bias (μ) and the difference
threshold (rv) for each individual in the dot and cloud condi-
tions. Four individuals were excluded from this analysis
because their psychometric functions in the cloud condition
were too flat to allow the fitting procedure to converge
(reflecting poor overall performance). As such, the results
reported below underestimate the difference in location acu-
ity between the two conditions.

To test whether there were systematic directional biases,
we compared the mean bias estimates to 0� (Fig. 2B). In both
conditions, there was a small bias to judge the comparison
display as shifted in the counterclockwise direction relative
to the referent display {cursor: t(58)= 5.71, Pperm < 0.001,
[0.25�, 0.52�], dz = 0.74; cloud: t(58) = 2.33, Pperm = 0.022,
[0.05�, 0.68�], dz = 0.30}. The degree of bias did not differ
between conditions {t(58)=0.13, Pperm = 0.87, [–0.27�, 0.31�],
dz = 0.02}.

To test whether the cursor and cloud yield different levels
of visual uncertainty, we compared the difference threshold
estimates for the two conditions (Fig. 2C). The estimate was
considerably higher for the cloud group compared with
the cursor group {t(58) = –11.66, Pperm < 0.001, [–2.88�, –
2.03�], dz = 1.52}. The mean difference thresholds were
1.96� and 4.41� for the cursor and cloud conditions, respec-
tively. Thus the results confirm that participants are more
variable in judging the centroid position of a cloud of dots
compared with the position of a single dot, a critical
assumption underlying our manipulation of visual uncer-
tainty in the reaching experiments.

Experiment 1: Reaching Task

Participants were randomly assigned to one of four groups
for the reaching task. After baseline blocks to familiarize the
participants with the apparatus and basic trial structure, we
presented clamped visual feedback, using either a cursor or
a cloud. To assess implicit adaptation, we measured the
mean hand angle over the course of the perturbation block
and during a subsequent washout block in which no feed-
back was provided (Fig. 3A).

On clamped visual feedback trials, the participants’ hand
gradually deviated in the direction opposite to the feedback,
and eventually reached an asymptote. Given that the partici-
pants were fully informed about the noncontingent nature
of the clamped feedback, as well as the repeated emphasis in
the instructions to ignore the feedback, we assumed that the
change in hand angle is implicit. This assumption is
strengthened by the fact that the hand angle remained simi-
lar between the end of the adaptation trials and start of the
no feedback aftereffect trials [main effect of clamp size: F
(1,92) =0.11, Pperm = 0.75, g2 < 0.01; main effect of uncer-
tainty: F(1,92) =0.05, Pperm = 0.83, g2 < 0.01; interaction: F
(1,92) =0.41, Pperm = 0.83, g2 < 0.01; difference between late
adaptation and aftereffect for all groups: Pperm > 0.06];
when other processes contribute to the behavioral change,
there is a rapid decrease in hand angle in the initial after-
effect trials (1, 7).

To quantify how much implicit adaptation was elicited by
the clamped visual feedback, we first examined the afteref-
fect results, asking if the mean hand angle was systemati-
cally different from 0� in the washout block. The two cursor
groups and the 30� cloud group showed implicit adaptation
as evidenced by a systematic aftereffect in which the hand
angle was shifted in a direction opposite to that of the clamp
{3.5� cursor: t(22) = 3.98, Pperm = 0.002, [3.31�, 9.80�], dz =
0.85; 30� cursor: t(22) = 7.55, Pperm = 0.002, [5.44�,9.66�], dz =
1.5; 30� cloud: t(22) = 8.82, Pperm < 0.001, [6.43�, 11.22�],
dz = 1.59}. In contrast, the 3.5� cloud group did not show sig-
nificant adaptation {t(22)= 1.66, Pperm = 0.08, [–0.40�, 3.72�],
dz = 0.34}.

We next compared the aftereffect data for the four condi-
tions. There was a significant effect of clamp size with the
large clamp conditions producing larger adaptation [F
(1,92) = 14.04, Pperm = 0.01, g2 =0.12]. The effect of feedback
type was not significant [F(1,92) = 2.33, Pperm = 0.13, g2 =
0.02]. Critically, there was a significant interaction of these
factors [F(1,92)=6.44, Pperm = 0.01, g2 =0.06]. Bonferroni cor-
rected post hoc analyses revealed that visual uncertainty
attenuated adaptation when the clamp size was small {3.5�

groups: t(22) = 2.63, Pperm,bf = 0.02, [1.15�, 8.63�], d=0.76; 3.5�

cursor: [6.55�, 7.69�]; 3.5� cloud: [1.66�, 4.88�]} but not when
the clamp size was large {30� groups: t(22) = –0.80, Pperm,bf =
1, [–4.29�, 1.86�], d=0.23, BF0þ = 2.69 in favor of the null; 30�

Figure 2. Visual discrimination task. A:
proportion of counterclockwise reports as
a function of the centroid of the compari-
son stimulus. Positive values on the x-axis
correspond to shifts in the counterclock-
wise direction. Estimated psychometric
functions are the thick lines based on
group averaged data for the cursor (green)
and cloud (purple) groups. B and C: mean
bias and threshold estimates for the cursor
and cloud conditions. Error bars represent
SE, and thin gray lines represent individu-
als’ data. P values from within-subject t
tests are shown. PSE, point of subjective
equality.
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cursor: [8.01�, 4.80�]; 30� cloud: [9.23�, 5.76�]}. We note that
overall adaptation in the current study, even in the cursor
condition, is attenuated compared with previous studies
using the clamp method. Late adaptation to the cursor is
between 7� and 9�, values that are much lower than the 20–
30� asymptotes observed in previous studies (33, 35). We sus-
pect the lower values observed here reflect two methodologi-
cal changes adopted in the current study, the use of end
point feedback and the blanking of the target after 250ms.
Both of these factors have been shown to attenuate adapta-
tion (6, 7, 10–12).

We then examined the learning functions, asking how vis-
ual uncertainty influenced the rate of early adaptation and
the magnitude of late adaptation (Figs 3, B and C). For each
dependent variable, we used a 2 � 2 between-subject
ANOVA with factors clamp size (3.5� and 30�) and feedback
type (cursor and cloud). For early adaptation, neither the
effect of clamp size [F(1,92) = 2.93, Pperm = 0.08, g2 =0.03] nor
feedback type [F(1,92)= 2.90, Pperm = 0.09, g2 =0.03] was sig-
nificant. However, there was a significant interaction of
these factors [F(1,92) = 7.53, Pperm = 0.005, g2 =0.07].
Bonferroni-corrected post hoc analyses revealed that visual
uncertainty attenuated adaptation when the clamp size was
small {3.5� groups: t(46)=4.16, Pperm,bf = 0.01, [0.23�, 0.67�],
d= 1.20; 3.5� cursor: [0.29�, 0.65�]; 3.5� cloud: [–0.11�, 0.15�]}
but not when the clamp size was large {30� groups: t(46) =
�0.62, Pperm,bf = 1, [–0.45�, 0.24�], d=0.17, BF0þ = 2.97 in favor
of the null; 30� cursor: [0.12�, 0.61�]; 30� cloud: [0.21�, 0.73�]}.

A similar pattern was observed for late adaptation: The
clamp size � feedback interaction was significant [F
(1,92) = 7.55, Pperm = 0.006, g2 =0.07], with the post hoc analy-
ses again showing that visual uncertainty attenuated adapta-
tion when the clamp size was small {3.5� groups: t(46)= 3.10,
Pperm,bf = 0.002, [1.81�, 8.51�], d=0.89} but not when the
clamp size was large {30� groups: t(46) = –0.93, Pperm,bf = 1, [–
5.57�, 2.04�], d=0.27, BF0þ = 2.44 in favor of the null}. There
was also a main effect of clamp size [F(1,92)= 14.04, Pperm =
0.008, g2 =0.12], with higher asymptotic levels reached for
the large clamp (30� cursor: [6.15�, 11.00�]; 30� cloud: [7.26�,
13.41�]) compared with the small clamp (3.5� cursor: [4.05�,
10.57�]; 3.5� cloud: [1.03�, 3.27�]). The main effect of feedback
type was not significant [F(1,92) = 1.83, Pperm = 0.19, g2 =0.02].

In summary, visual uncertainty had a large effect when
the clamp size was small clamp but a negligible effect when
the clamp size was large. Moreover, the effect of uncertainty
did not seem to increase or diminish over the course of learn-
ing, evident by the persistent size by feedback type interac-
tion observed during both early and late adaptation, and
consistent with the nonsignificant interaction in the three-
way ANOVA involving clamp size � feedback type � learn-
ing phase [F(1,92) = 3.23, Pperm = 0.09, g2 =0.01].

Experiment 2: Reaching Task

In the second experiment, we sampled a larger range of
error sizes to take a more detailed look at how uncertainty is
impacted by error size. Using a within-subject design, we

Figure 3. Reaching results for experiment 1. A: mean time course of hand angles for the cursor (green) and cloud (purple) groups, presented with either
a 3.5� (top) and 30� (bottom) clamp during the error clamp block. Hand angle is presented relative to the target (light gray horizontal dashed line) during
no feedback (dark gray background), veridical feedback (light gray background), and error clamp trials (white background). Shaded region denoting SE.
B: early adaptation rate, operationalized as the average change in hand angle per cycle over cycles 3–7 in the error clamp block. C: late adaptation,
operationalized as average hand angle over the last 10 cycles in the error clamp block. Bonferroni (bf) corrected P values from between-subject t tests
are shown.
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manipulated visual uncertainty by again providing either
cursor or cloud feedback, and now crossed that with a large
range of clamp sizes (0 to ± 90�). The main dependent vari-
able was the trial-to-trial change in hand angle (D hand
angle). Positive values indicate a change in hand angle oppo-
site to the direction of the error clamp (i.e., adaptation).

Qualitatively, the shape of each function was bipartite,
consisting of a roughly linear zone (up to �18–30�), followed
by an extended saturation zone (Fig. 4). To statistically eval-
uate these data, we asked if the D hand angle value for each
condition (10 error sizes � 2 types of feedback) was signifi-
cantly different than zero. For the cursor condition (green
line), trial-by-trial adaptation was significant for all clamp
sizes [all t(23)> 2.31, Pperm < 0.022, d>0.47] except for the 0�

[t(23) = –0.25, Pperm = 0.97, d=0.05] and 1.5� conditions [t
(23) = 1.14, Pperm = 0.23, d=0.23]. In contrast, for the cloud
condition, only clamp sizes �18� elicited significant implicit
adaptation [all t(23)> 1.86, Pperm < 0.02, d>0.38]. The trial-
to-trial D hand angle was not significant when the error was
0� [t(23) = –0.30, Pperm = 0.75, d=0.06], 1.5� [t(23) = –0.15,
Pperm = 0.50, d=0.03], 3.5� [t(23) = –0.15, Pperm = 0.78,
d=0.03], and 10� [t(23) = 1.11, Pperm = 0.36, d=0.23].

The interaction between error size and uncertainty is evi-
dent in Fig. 4 [v(8, 24) = 15.64, P = 0.04, g2 =0.03]: cursor and
cloud functions show considerable divergence when the
errors are <30�, consistent with the observation in experi-
ment 1 that visual uncertainty attenuates adaptation for
small clamp sizes. However, cursor and cloud converge
when errors are larger than 30�. To statistically compare
the two types of feedback, paired t tests were performed
for each clamp size, correcting for multiple comparisons.
The cursor elicited a stronger adaptive response than the
cloud for clamp sizes of 3.5� [t(23) = 2.69, Pperm,BH = 0.04,
dz = 0.55, BF0þ = 0.18], 10� [t(23) = 3.77, Pperm,BH = 0.02, dz =
0.77, BF0þ = 0.06], and 18� [t(23) = 3.13, Pperm,BH = 0.02,
dz = 0.64, BF0þ = 0.13] conditions. The mean D hand angle
was also larger in response to the cursor in the 1.5� condi-
tion, but this effect was not significant [t(23) = 0.85,
Pperm,BH = 0.50, dz = 0.17, BF0þ = 2.38 in favor of the null].
There were no differences in the adaptive response to cur-
sor or cloud feedback in response to clamp sizes greater
or equal to 30� [all t(23)< 1.29, Pperm,BH > 0.37, dz < 0.30,
BF0þ > 1.9 in favor of the null].

In summary, the results of experiment 2 provide further
evidence that visual uncertainty attenuates adaptation in
response to small clamp sizes but had a negligible effect on
the response to large clamp sizes.

DISCUSSION
The rate of learning in sensorimotor adaptation tasks

depends on various properties of the feedback such as the
size of the error, the variability of the signal, and its inferred
relevance (21, 24, 28). However, the interpretation of these
results is complicated by limitations in the methods used in
standard adaptation tasks. First, multiple learning systems
have been shown to play a substantial role in performance,
making it difficult to evaluate how uncertainty impacts
implicit adaptation. Second, when a constant perturbation is
paired with feedback contingent on the participant’s per-
formance, the size of the error and the phase of learning are
confounded. Here, we exploited unique features of the
clamp method (33) to systematically examine the effect of
visual uncertainty on implicit visuomotor adaptation.
Convergent results from two experiments show that uncer-
tainty attenuated learning but only when the error size was
small. These observations reveal a novel interaction between
the quality and the relevance of errors that jointly constrain
the rate and extent of sensorimotor adaptation.

These conclusions are predicated on the assumption that
clamped feedback engages processes similar to those under-
lying implicit adaptation elicited in standard visuomotor
tasks with contingent feedback, as well as by perturbations
that arisemore naturally in the environment (e.g., an uneven
surface or a heavy jacket). As noted in the INTRODUCTION, the
clamp method mitigates certain confounds inherent in
standard visuomotor adaptation tasks, while allowing the ex-
perimenter to maintain control over error size. Although this
method is certainly quirky (participants told to ignore an
invariant, noncontingent “feedback” signal), the task is sim-
ple, and the adaptive response is robust. While future work
may be warranted to look at the interaction of visual uncer-
tainty and error size in more naturalistic settings, we expect
that the same pattern would be observed given the close cor-
respondence in behavior elicited by clamped and contingent
feedback (21, 33–35, 38). For example, with both types of

Figure 4. Results for experiment 2.
Change (D) in hand angle on trial n þ 1 as
a function of the clamped feedback on
trial n. Feedback was either given in form
of a cursor (green) or cloud (purple). Data
represent mean corrections across partici-
pants. Shaded region represents SE.
Benjamini-Hochberg (BH)-corrected P val-
ues from significant within-subject t tests
between cursor and cloud are shown.
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feedback, the size of the response scales with the size of the
perturbation over a limited range before saturating at a com-
parable asymptotic level (1, 21, 33, 35, 50–53). Given these
similarities, we expect the attenuating effect of visual uncer-
tainty would be restricted to small errors even in a standard
adaptation task.

This effect of visual uncertainty has been interpreted
through the lens of optimal integration (29). By this model
(Fig. 5A), the learning rate is a weighted composition of feed-
back and feedforward sources (24, 28, 30), with these weights
determined by the relative uncertainties in each source. For
a given level of uncertainty, the optimal integration model
predicts the size of the trial-to-trial correction will increase
in proportion with the size of the error, with the slope corre-
sponding to the learning rate. Less weight would be given to
an unreliable feedback signal, resulting in a lower slope (Fig.
5A). While this model captures the effect of visual uncer-
tainty for small errors, it fails to account for the negligible

effect of visual uncertainty on large errors observed in the
present studies.

Different hypotheses may account for this interaction
between error size and visual uncertainty. One account
builds on the relevance hypothesis (21, 54), the idea that that
the motor system gives more weight to small errors relative
to large errors. Relevance estimation (Fig. 5B) predicts that
the rate of adaptation will fall off with increases in error size,
an effect observed in experiment 2 (see Refs. 21–23). This fall-
off with size should occur for feedback signals that are either
low (cursor) or high (cloud) in terms of uncertainty.
However, the model predicts that the effect of uncertainty
will diminish with size. In the extreme, the rate of learning
would reach zero, and as such, by definition, the rate would
no longer be impacted by uncertainty.

More interesting is to consider why the effect of uncer-
tainty should have a differential effect on small and large
errors. Relevance estimation, at least in terms of error size,
captures the notion that the motor system is estimating the
source of the error. Small errors, attributed to a miscalibra-
tion in the sensorimotor system, require correction, and the
weight given to them will fall off with increasing uncer-
tainty. Large errors, on the other hand, get discounted
because they may be attributed to an external source.
Paradoxically, an uncertain large error is likely to reduce the
rate of discounting since the uncertainty is likely to also
impact the likelihood that the error will be attributed to an
external source. By this view, we would expect to observe a
crossover point (Fig. 5B) where the response to a large
(mean) error is greater to a high uncertainty signal compared
with a low uncertainty signal (i.e., the cursor condition
would decay faster to zero at a smaller error size compared
with the cloud condition). While the functions approach
each other in experiment 2, there were no obvious signs of
a crossover in the group data (Fig. 4) nor was this pre-
dicted pattern evident in an analysis of individual data
(Supplemental Fig. S1: see https://doi.org/10.6084/m9.
figshare.13150715.v1; Supplemental Fig. S2: see https://
doi.org/10.6084/m9.figshare.13150667.v1). Moreover, the
functions did not approach a learning rate of zero, even
for errors as large as 90�, a result that seems inconsistent
with the predictions of the relevance estimation model.

Our prior work with the clamp method has motivated an
alternative model of adaptation, one that is also consistent
with the observed interaction between error size and uncer-
tainty. The motor correction model emphasizes that con-
straints on adaptation rates arise from limitations with the
degree of plasticity or change that can occur within the sen-
sorimotor system from one trial to the next (35). As with the
relevance estimation model, the motor correction model
assumes a linear scaling of change for small errors. However,
the system eventually reaches a saturation point, corre-
sponding to the maximum degree of plasticity in response to
an error. Beyond this saturation point, the update value
remains at this maximum for errors out to 90�, eventually
decaying back to no correction around 135�–180� (33, 35). A
core feature of this model is that it can account for the rela-
tively invariant implicit adaptation functions over a large
range of errors, an observation at odds with optimal integra-
tion and relevance estimation models and consistent with

Figure 5. Schematic hypotheses of the effect of visual uncertainty on
visuomotor adaptation. A–C: predicted trial-by-trial change in hand angle
as a function of error size and visual uncertainty (cursor = certain feed-
back; cloud = uncertain feedback) for the optimal integration model (OIM;
A), relevance estimation model (REM; B), and motor correction model
(MCM; C). D: the motor correction model assumes that the update function
is composed of a linear zone, where motor updates are proportional to
the size of the error, and a saturation zone, estimated to start around 5�,
over which the size of the motor update is invariant. The saturation level
of the colored bars on the x-axis depict the distribution of perceived loca-
tions for the low uncertainty (cursor, green) and high uncertainty (cloud,
purple) conditions. For a large 30� error, the perceived location of the
error always falls in the saturation zone and thus adaptation is similar
for the cursor and cloud conditions. For the small 3.5�, uncertainty will
impact the size of the update, including sign flips when the perceived
location of the error is of the opposite sign as the actual error.
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results from standard adaptation tasks showing a common
asymptotic value over a wide range of errors (1).

The architecture and operation of the motor correction
model require minimalmodification to account for the effect
of uncertainty. One possibility would be to posit that the
motor system performs a form of optimal integration, adjust-
ing the gain on motor output based on varying levels of vis-
ual uncertainty. As such, visual uncertainty would attenuate
themotor correction function but still reach the same satura-
tion point, albeit at a larger error size (Fig. 5C). This predic-
tion is consistent with visual uncertainty increasing the
saturation point from�18� in the cursor condition to�30� in
the cloud condition (Fig. 4).

Alternatively, the main effect of uncertainty in the visual
feedback may be to alter the perceived location of the feed-
back on a given trial. That is, the motor system may make a
point estimate of the location of the feedback and use this
estimate to determine the required correction in the sensori-
motor map, with the update function unaffected by uncer-
tainty (Fig. 5D). Adaptation to large errors would be
unaffected by uncertainty since the perceived locations
would largely fall within the saturation zone and therefore
elicit the maximum motor correction. In contrast, uncer-
tainty would attenuate adaptation to small errors for two
related reasons. First, the sum effect of normally distrib-
uted errors would result in attenuation given that misper-
ceptions associated with large errors end up in the
saturated zone, whereas misperceptions associated with
small errors are in the linear zone. Second, with a broad
distribution of perceived locations (high visual uncer-
tainty), the feedback will on some trials be mis-localized to
the opposite side of the target, eliciting a motor correction
with the opposite sign.

Even though the interaction between error size and visual
uncertainty rules out the simple optimal integration model,
the current data do not definitively discriminate between
the relevance estimation and motor correction models. The
absence of a consistent crossover effect even with errors as
large as 90� is at odds with the prediction unique to the rele-
vance estimation model. However, this effect may be diffi-
cult to detect in group-level data that pool together
individuals with different crossover points, and the individ-
ual functions may be too noisy to reliably estimate crossover
points, should they exist. As such, we believe both the rele-
vance estimation andmotor correctionmodels remain viable
candidates that account for the effect of visual uncertainty
on adaptation.

It is, of course, possible that the core ideas from both of
these models will be a part of a more comprehensive model.
The models differ in the processing stage at which uncer-
tainty impacts adaptation. For relevance estimation, the
effect is in terms of the input (i.e., error signal) to the learn-
ing process, namely a gain modulating the error signal. In
contrast, for the motor correction model, the effect is in
terms of the output of the system, either in terms of a gain
modulating how the system updates the sensorimotor map,
or as a consequence of trial-by-trial adaptation in response
to (mis)localized errors.

This last point is a key distinction: optimal integration,
relevance estimation, and attenuated motor corrections
all assume that the adaptation system is sensitive to

distributional information about the feedback, adjusting its
parameters in the face of variation in uncertainty. In con-
trast, the mis-localizationmotor correctionmodel posits that
the adaptation system is inflexible, doggedly recalibrating
the sensorimotor map based on its estimate of the perceived
location of the feedback. Such rigidity has also been
observed in accounts of how adaptation is affected (or not
affected) by errors of different sizes (1, 33), perturbation
schedules (40), and task demands (39). The effects of uncer-
tainty, or lack thereof, adds to the growing list of exam-
ples where the motor system behaves in a rigid manner,
insensitive to higher level statistics embedded within the
environment.
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